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Abstract
A piezoelectric vibration energy harvester is presented that can generate electricity from the
weight of passing cars or crowds. The energy harvester consists of a piezoelectric beam, which
buckles when the device is stepped on. The energy harvester can have a horizontal or vertical
configuration. In the vertical (direct) configuration, the piezoelectric beam is vertical and directly
sustains the weight of the vehicles or people. In the horizontal (indirect) configuration, the
vertical weight is transferred to a horizontal axial force through a scissor-like mechanism.
Buckling of the beam results in significant stresses and, thus, large power production. However,
if the beam’s buckling is not controlled, the beam will fracture. To prevent this, the axial
deformation is constrained to limit the deformations of the beam. In this paper, the energy
harvester is analytically modeled. The considered piezoelectric beam is a general non-uniform
beam. The natural frequencies, mode shapes, and the critical buckling force corresponding to
each mode shape are calculated. The electro-mechanical coupling and the geometric
nonlinearities are included in the model. The design criteria for the device are discussed. It is
demonstrated that a device, realized with commonly used piezoelectric patches, can generate tens
of milliwatts of power from passing car traffic. The proposed device could also be implemented
in the sidewalks or integrated in shoe soles for energy generation. One of the key features of the
device is its frequency up-conversion characteristics. The piezoelectric beam undergoes free
vibrations each time the weight is applied to or removed from the energy harvester. The
frequency of the free vibrations is orders of magnitude larger than the frequency of the load. The
device is, thus, both efficient and insensitive to the frequency of the force excitations.

Keywords: vibration energy harvesting, bimorph piezoelectric beams, controlled buckling, car
energy harvesting, shoe energy harvesting
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1. Introduction

In recent years, energy harvesting devices have attracted
significant interest in industrial and manufacturing sectors.
The unique ability of converting ambient energy into elec-
trical energy has motivated several academic and commercial
groups to be involved in the analysis and development of
energy harvesting technology. Commonly, the generated
electricity is stored in capacitors or batteries. For more
information on vibration energy harvesting in general the
reader may refer to [1–3]. Specifically, bridge vibrations can
be converted to electricity to power structural health mon-
itoring sensor nodes, traffic sensors, or possibly road signs

[4–7]. In this method, the energy originates from the passing
vehicles, translates to the bridge and causes vibrations in the
bridge. This vibration is converted into electrical energy by
the vibration energy harvester devices. When the energy
translates from the vehicle to the bridge, the energy distributes
over a very large structure. The energy absorbed by the
vibrational energy harvester is therefore a very small fraction
of the energy wasted by the vehicles. This is the first short-
coming of the traditional approach in bridge vibrational
energy harvesting. The second disadvantage of conventional
devices is that they will be useful only when installed on
bridges. The vibrations of the regular portions of the roads are
not sufficiently large to result in notable electrical energy.
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The third drawback of bridge vibrational energy harvesters is
their limited frequency bandwidth. This issue has received
significant attention in recent years [8–15]. To overcome
these challenges we propose a piezoelectric buckling har-
vester that directly converts the energy of passing vehicles or
crowds to electricity. The piezoelectric beam oscillates freely
in response to sudden changes of the load on the harvester.
The energy harvester is therefore not resonant based and is
insensitive to the frequency of the excitations.

A number of groups have studied energy harvesting of
buckled piezoelectric beams. Buckling has been used in dif-
ferent contexts for energy harvesting. An axial load is most
often used to affect the dynamics of the piezoelectric beams
[16–20]. In these configurations, the ambient oscillations excite
the beam laterally and the axial load or the axial displacement is
constant. The axial load is directly used as a source of excita-
tion in [21–24]. In this configuration, the successive buckling of
the piezoelectric beam can result in a frequency up-conversion
mechanism. In this method, however, the axial load is not
constrained and its excess can easily damage the piezoelectric
beam. In the presented energy harvester, not only do we use the
load as an axial force excitation and thus generate significant
amounts of power, but we also constrain the axial deformation
to prevent fracture of the brittle piezoelectric beams.

In this paper, vertical and horizontal configurations of the
piezoelectric buckling harvesters are investigated. A vertical
piezoelectric beam is used to directly generate electricity
using the load of the passing vehicles. Piezoelectric ceramics
are brittle, and easily fracture when subjected to concentrated
stresses. The piezoelectric patches are usually bounded to stiff
materials such as metals or carbon fiber composites [25]. The
buckling of a beam can result in large deformations of the
beam, which may cause damage to the piezoelectric patch. In
the proposed device, we make sure that the buckling of the
beam is safe and will not cause damage. By using a
mechanical safety stop, the amount of buckling of the beam is
limited and controlled, so low-cycle fatigue will not be an
issue in our device. In our design, the device is non-resonant
and at the same time the power generated from piezoelectric
beam is significant. The generated power can be in the order
of tens of milliwatts. The proposed design is scalable and can
be designed to fit in a shoe heel. This will make it possible to
generate electricity with each step of a person. The power can
be used for charging smart phones, players, or motion sensors
[26], to make the wearable devices self-powered.

This paper proceeds by more detailed discussion of ver-
tical and horizontal device configurations. Electromechanical
models for vibration and energy harvesting characteristics of
the device are presented. The models are numerically solved to
predict the performance of the device. Finally, the effect of the
length and thickness of the active layer on the generated power
is discussed through a parametric study.

2. Device configuration

In this section, we discuss vertical (direct) and horizontal
(indirect) device configurations of the energy harvester. In the

vertical configuration the weight of the passing load is directly
transmitted to the piezoelectric beam. The vertical beam con-
sists of a steel layer as a substrate and two piezoelectric layers.
The proposed device (figure 1) is installed on roads such that
the vehicles directly pass over it. The transduction element that
converts mechanical vibrations to electrical energy is the ver-
tical piezoelectric bimorph. Three key objectives are sought in
this design. The first objective is to have a robust energy
harvesting device, i.e. to generate energy from every passing
tire. The second objective is to maximize the amount of energy
and to induce maximum amount of stress in the piezoelectric
layer without breaking it. The third goal is to have a durable
device. We should, therefore, limit the maximum stress in the
piezoelectric layer to the allowable stress level for high-cycle
fatigue. By implementing a mechanical stop we control the
amount of buckling and prevent fracture of the piezoelectric
beam due to excessive stresses.

Figure 1 shows the uniform and the segmented beam in
the direct configuration. In our design, the larger the axial
deformation of the beam, the easier the control of the stress in
the piezoelectric patches. This axial deformation significantly
increases with the length of the beam. An axial deformation in
millimeters requires the length of the beam to be on the order
of tens of centimetres. To increase the length of the beam
without significantly increasing the cost, we need to cover
only part of the beam with piezoceramics. The parts that are
covered with piezoceramics are the parts of the beam that are
under maximum bending stress. For a pin–pin beam, this part
is the middle section of the beam. As is shown on figure 1(b),
a non-uniform segmented beam consists of three different
parts. The bottom (first) and top (third) sections of the beam
are just a simple spring steel layer. The middle (second)
section is a bimorph piezoelectric beam, with two active
layers on the surfaces and one spring steel layer in between.

Figure 1. The vertical modeling of the energy harvesting device for a
uniform beam (a) and a segmented beam (b).

Figure 2. The horizontal (indirect) configuration.
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The piezoelectric layer generates power when it buckles and
when it returns to the undeformed shape. When the force is
removed, the beam returns to its non-deformed position.

The horizontal (indirect) configuration is another type of
energy harvester device studied in this paper. As illustrated in
figure 2, the proposed device consists of a scissor linkage
mechanism. The rigid scissor mechanism has two functions.
Its first function is to convert the vertical load to a horizontal
axial force across the piezoelectric segmented beam. The
second role of the mechanism is to scale the axial deformation
of the beam to a more prominent vertical displacement to
make the buckling control easier.

The static governing equations are (figure 3):

P F cot ,
cot , 1

( )
( ) ( )
q

d q
=
= D

where F is the vertical force, P is the axial force acting on the
piezoelectric beam, q is the angle defined in figure 3, d is the
vertical gap distance, and Δ is the axial shortening of the
segmented beam. As seen in equation (1) if the angle is less
than 45°, P will be larger than F and the mechanism magnifies
the vertical force. This configuration results in a large force on
the active beam with just a very small force over the harvester
F. This feature makes this harvester useful for portable devices
and for applications in which the forces are small. The
horizontal form factor of the device makes it easy to implement
in sidewalks or shoe soles. Another advantage of having the
angle less than 45° is the magnification of the gap distance .d
Since in this configuration d is larger than ,D the axial stop can
be incorporated in the vertical direction to make the fabrication
tolerances more relaxed. If the angle is more than 45°, P will be
smaller than F, which makes this configuration suitable for
installing on roads and under large forces. By increasing the
angle, we make sure that the applied force on the segmented
beam will not exceed the allowable amount and will not result
in breaking the beam. In this paper we call the required gap
size the recess.

3. Modeling and governing equations

The partial differential governing equations for the vibrations
of the piezoelectric beam are derived through equilibrium

method [8, 9, 27]. The mechanical governing equation for the
covered portion of the beam is:
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where m is the total mass per unit length of the beam,
w x t,( ) is the lateral deflection of the beam, EI is the
equivalent bending stiffness of the composite beam, Keq is
the equivalent stiffness of the active beam, a is the
piezoelectric coupling coefficient, and V is the voltage across
the piezoelectric elements that are connected in parallel. The
width of the beam is denoted by b, the thickness of the
substrate is t ,s and the thickness of the piezoelectric layer is t .p

x( )d is the Dirac delta function. The coupling term, ,a for the
parallel connection can be written as [28]:
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where e13 is the piezoelectric coefficient. If the axial force is
larger than the critical buckling force, the beam buckles. In
this paper, we assume that the force is larger than the first
critical load and is less than the critical load of the higher
modes. We therefore, only consider the first buckling mode
shape for discretization of the governing equations. We
assume that the buckling mode shapes are identical to the
vibration mode shapes of the beam. To derive the natural
frequencies and mode shapes of the segmented beam, we first
write the undamped unforced governing equations for each
segment:
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We will use modal analysis to discretize the equations of
motion (section 11 of [29]):
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where, jf is the jth mode shape and Tj is the corresponding
temporal function. Substituting equation (5) in equation (4) ,
the general solution for a segmented beam can be found in the
form of:
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where i is the ith beam section and j shows the jth mode
shape. a a a a, , ,ji ji ji ji1 2 3 4 and jb are calculated from the

Figure 3. The horizontal energy harvesting device: undeformed (left)
and after buckling (right).
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boundary conditions. and Ci is [29, 30]:

C
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If the beam is entirely covered with piezoelectric mate-
rial, it represents a uniform simply supported beam, and the
mode shapes are [29]:

x A j
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The mode shapes of a segmented beam are different from
those of a uniform beam. Each mode shape is a three-part
function where each function quantifies the mode shape over
a segment of the segmented beam. The beam has three seg-
ments and the deflection shapes are different for each part.
The mode shape functions over each segment of the beam are
represented by equation (6). So, there are, in total, 12
unknown coefficients a a a, , , .j j j11 12 34( )¼ There are four
boundary conditions at the two ends. (The deflection ( )f and
bending moment EI( )f are zero.) Because of continuity and
equilibrium conditions, we have four conditions at each of the
interfaces. In other words, at these points, the two sides
should have the same deflection, slope, shear force, and
bending moment. Four boundary conditions at the two ends
and eight equilibrium and continuity equations at the two
interfaces give the 12 equations to solve for the 12 unknowns:

l l l

l l l

l l

l l

E I l E I l

E I l E I l

l l l l

l l l l

E I l l E I l l

E I l l E I l l

0 0

0

0 0

0

.

9

j

j

j

j

j j

j j

j j

j j

j j

j j

j j

j j

1

3 1 2 3

1

3 1 2 3

1 1 2 1

1 1 2 1

1 1 1 1 2 2 2 1

1 1 1
3

1 2 2 2
3

1

2 1 2 3 1 2

2 1 2 3 1 2

2 2 2 1 2 3 3 3 1 2

2 2 2
3

1 2 3 3 3
3

1 2

( )

( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )

( )

( )

( )

( ) ( )

( ) ( )

⎧

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎩

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

f

f

f

f

f f

f f

f f

f f

f f

f f

f f

f f

=

+ + =

¢¢ =

¢¢ + + =

=

¢ = ¢

¢¢ = ¢¢

=

+ = +

¢ + = ¢ +

¢¢ + = ¢¢ +

+ = +

j1f is the deflection of the first part, j2f is the deflection of the
middle section of the beam, and j3f is the deflection of the
third part of the beam. jif¢ represents the slope in each part,

E Ii i jif¢¢ is the bending moment of the beam, and E Ii i ji
3( )f is the

shear force of the beam. To find the unknown coefficients we
write the 12 equations in (9) and write them in the matrix

form: BA 0 .= B is a 12×12 matrix and A is defined as:

10a a a a a a a a a a a aA              .j j j j j j j j j j j j
T

11 12 13 14 21 22 23 24 31 32 33 34 ( )[ ]=

Non-trivial solutions only exist if the determinant of
matrix B is zero. In order to find the b that makes the
determinant zero, we plot the logarithm of the determinant of
matrix B in terms of different s.b The first drop in the plot is
associated with the frequency of the first mode shape, the
second drop in the plot is the frequency of the second mode
shapes, and the next drops are associated with the next natural
frequencies. To find the exact frequency, we use the Newton–
Raphson method using the estimated frequencies from the
aforementioned plot as the initial guess. In this paper, we
consider just the first two frequencies in order to find the first
two mode shapes and their critical buckling force.

If the determinant of B matrix is zero, there is not a unique
answer for the set of equations. So in order to solve them, one
equation should be eliminated. Next, a value for one of the
components of the vector A is assumed, and the other 11
remaining coefficients are derived based on that component.
We need to check to see if the choice of the arbitrary com-
ponent has been proper. In some cases that assumed compo-
nent in the coefficient vector is zero. This means that, our first
assumption is not correct, and we need to take another element
as the assumed component. In order to check to see if the
assumption is correct, we remove the column and the row
associated with that assumed coefficient from matrix B, and
check the rank of the remaining square matrix. If the rank is
n 1- (11 in this case), our assumption was correct and we can
proceed. But if the rank is less than n 1,- we remove another
row instead of the one, which was removed. A more numeri-
cally efficient method for derivation of the natural frequencies
and the mode shape is presented in the appendix.

In our calculation we use the mass normalized mode
shapes [31]:

x m x xd 1 . 11
L

ij i ij
0

( ) ( ) ( )ò f f =

Figure 4 compares the deformation shape of a segmented
deflected beam under axial force and that of a uniform beam.
For validation of our method, we consider a special case: we
assume that the thickness of the piezoelectric layer in the
middle section is zero. As expected, the deflection shape is
identical to that of a uniform beam. The critical buckling force
is checked for both cases and it is the same in both cases.

After finding the deflection of the beam we replace
w x t,( ) with w x t x T t, j j j1( ) ( ) ( )f= å =

¥ in equation (2) and
we pre-multiply the equation by the mode shape. If we
integrate the expression from zero to the length of the beam,
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we get:
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Due to orthogonality of the mode shapes the modal equations
are decoupled:

M T cT K p T N T V t 0, 13k k k k k
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where Mk is the modal mass of the kth mode, c is the damping
ration, K stands for the linear stiffness, p is the reduction of
the stiffness coefficient due to the axial force, N is the
nonlinear coefficient, and the coupling coefficient is .b These
integrals were calculated analytically for a uniform beam:
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For a segmented beam, the integrals in equation (14) were
calculated numerically. The critical buckling force of the
beam is the amount of axial force, P, that makes p equal to K .

Figure 5 shows the equivalent electrical circuit for the
energy harvester. The governing equation using Kirchhoff’s

law is [32]:

  C V
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R
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where Rl is load resistance, and the capacitance of the
piezoelectric is C n ,Lb

tp 0
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= in which n is the number of

piezoelectric layers (two in our device). The governing
equations before the stop is engaged are:
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If the axial force is less than the critical load, the zero
deflection equilibrium would be stable. However, if the axial
force surpasses the first critical load, the zero deflection
equilibrium becomes unstable. In that situation, due to the
existence of the nonlinearities, another stable equilibrium
exists. The modal coordinate representing the nonlinear
equilibrium point is:

.T
p K

N
172 ( ) ( )=

-

The governing differential equations in equation (2) are valid
before the stop is engaged. When the support is engaged, the
external load is applied to the support and equation (16) is not
valid. In that situation the axial displacement of the beam is
fixed at the designed recess (figure 1). In this situation, the
problem changes from a fixed axial force problem to a fixed
axial displacement problem. The governing equations for the
vibration of an axially displaced beam is presented in [33] as:
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The model manifested in equation (18) implies that the
effect of an axial fixed displacement ofΔ is equal to the effect
of an axial force of K .eqD Unfortunately this model does not
seem to be correct. The first incorrect result of equation (18) is
on the static axial deformation of the beam. In static situation
the axial deformation of the beam must be equal to Δ. The

Figure 4. Deflection of uniform beam (dashed line) versus
segmented beam with two piezoelectric layers in the middle.

Figure 5. Electrical circuits for the harvester.
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axial deformation of the beam is given by
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For a uniform beam the axial deformation resulted from this
equation and equation (18) is d .AL
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the boundary conditions. We suggest that the correct
equivalent axial force should be K peq cD + =
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2D + p where pc is the critical load. This value is
consistent with d .= D The difference between the two
values becomes obvious in the following thought experiment.
Assume that the deformed axial length of the beam is a slight
amount (ε) shorter than L. Since the shortening of the neutral
axis is negligible, the beam has to buckle to accommodate to
the boundary conditions. The equivalent axial force should
therefore be larger than the critical buckling load. This
condition is satisfied by our corrected equivalent load but is
contradicted with the expression in [33]. So, we suggest that
the correct formula is:
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Thus, after the stop is engaged, instead of equation (16) the
governing equations are [34]:

MT cT K p T NT V t

C V
V

R
T

0,

.
20

l

e
3

p

( )̈ ( )
( )

⎧
⎨⎪
⎩⎪

b

b

+ + - + + =

+ =



 

The parameters definitions are similar to those in
equation (16). The only difference is the reduction of the
stiffness coefficient due to the axial force:
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In this equation Pc is the first critical load for buckling and
Pstp the equivalent axial force in equation (19) which is equal
to Pstp=KeqΔ. Where Δ is the shortening in the beam when
the stop is hit and Keq is the equivalent stiffness of the
segmented beam:
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The critical force for buckling is defined as the amount of
force that makes the linear part of equation (16) zero (p=K).
So, the critical force is:
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For a uniform beam the value of pe and pc are equal to:
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where n is the number of the buckling mode. For the vertical
configuration, the maximum shortening of the beam is equal
to the gap between the device and the support (Δ). For the
indirect configuration, equation (1) relates the shortening of
the beam and the required gap size.

4. Design

The purpose of the stop is to prevent fracture of the beam
under buckling deformations. This is achieved by limiting the
amount of axial deformation of the beam. In this section, we
calculate the safe gap size for uniform and segmented beams.
First, we calculate the amount of axial deformation of the
beam, which corresponds to maximum allowable stress in the
materials. Based on the equation for the shortening of the
beam, the amount of maximum shortening of the beam
(Δmax) is proportional to the second power of the maximum
allowable strain in the beam:

. 24max max
2 ( )D µ

The allowable strain is related to the allowable stress as:

E E
, , 25max s

ys

s
max p

yp

p
( ) 

s s
= =

where max s and max p are the maximum allowable strain in
the substrate and piezoelectric patches. σyp and σys are the
yield stress for the substrate and piezoelectric layers. Ep and
Es are the module of elasticity for the piezoelectric material
and the substrate. In segmented beams the relation between
 max and Δmax is more complicated than that of the uniform
beams. The first complication is that the fracture can occur at
the piezoelectric patch or at the substrate. In the covered
sections, the fracture occurs at the piezoelectric patch. The
fracture of the non-covered sections naturally occurs due to
the fracture of the substrate. We first calculate the strains
occurring over the piezoelectric material and the substrate for
an arbitrary beam deformation. We will then identify the most
susceptible part of the beam and will calculate the axial
deformation which causes the fracture of the beam at its most
susceptible point. The considered arbitrary deformation is that
corresponding to a modal coordinate of one. The procedure is
to first find this axial deformation. We also find the maximum
strain over all the length of the beam at this modal
deformation. We will then locate the most susceptible fracture
point, and compare the value of the calculated strain to the
maximum allowable strain at that point. Since the axial
deformation is proportional to the second power of the strain,
a scaling factor can be calculated to give the beam axial
shortening corresponding to the maximum allowable strain.
This beam allowable shortening identifies the recess in this
design.

The axial deformation corresponding to the modal
coordinate of one is Δ0, the maximum strain of the
piezoelectric patch is 0p , and the maximum strain of the
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For a uniform beam the maximum strain occurs at the middle
of the beam. This is not necessarily the case in segmented
beams since the most susceptible point can be on the covered
patch or the uncovered regions. In the next step, based on
equations (24) and (26) we can find the maximum allowable
shortening in the beam (Δmax). In order to find Δmax we
calculate this value both for substrate (Δs,max) and the
piezoelectric layer (Δp,max):
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D = D D = D

The Δmax is set to the smaller number between Δs,max and
Δp,max. The other thing we should notice in designing the
device is that the system is designed to have low damping
coefficient to enhance the power generation. As a result, the
beam might deform more than expected from static analysis
of the buckling of the beam. So, a safety factor is considered
for the gap size in the final stage.

The solution is divided into different parts. The first part
is when the force is over the device and the beam moves
down until it hits the support. In this part, equation (2) is the
governing equation for the vibration of the piezoelectric
beam. After the beam buckles the support is engaged,
equation (19) is the governing equation of the system. When
the force is removed, the piezoelectric beam tends to spring
back and equation (2) gives the solution of the system. Since
there is no force over the harvester in this situation, p equals
zero in the equation. Since both equations (2) and (19) are
nonlinear, we use numerical integrations to solve the model
and predict the power generated by the energy harvesting
device.

To design the energy harvesting device, we need to make
sure that the stresses in neither piezoelectric layer nor the
substrate exceed the corresponding yield stress. If the force
exceeds the limit, the stress will break the harvester. The
horizontal configuration could be implemented in shoe soles
or sidewalks, using loads of passing crowds over the har-
vester. So, the amount of force we expect on the upper beam
is about human weight. Since this force would become larger
in the case of jumping or running over the device, we con-
sider a safety factor in our design. The vertical configuration
could be implemented in the roadways, generating electricity
using the force of the passing cars. We consider a safety
factor to make sure the device does not break under the
weight of heavier vehicles. The next step is to check if the
weight is more than the first critical buckling load of the
piezoelectric beam. In order to calculate the first critical
buckling force, the first vibration mode shape is considered as

f(x) in the equation (23). Similarly, for calculating the nth
buckling critical force, f(x) in equation (23) is replaced by the
nth mode shape. Since there usually is some level of charge
cancellation associated with the higher modes [35], we only
utilize the first buckling mode shape in our design. Thus, the
force over the piezoelectric beam has to be more than the first
critical buckling load and less than the second critical buck-
ling load. First and second critical buckling forces are shown
for different thicknesses and lengths of piezoelectric layers in
figure 6. For a uniform simply supported beam, the critical
buckling force is calculated using equation (23). As the
equation shows, the second critical buckling force in a uni-
form beam is four times the first critical buckling force. The
interesting result about the segmented beam is that the ratio of
the second to the first critical buckling force changes with the
length and thickness of the middle part. Figure 6 shows the
first and second critical buckling force for a segmented beam
in vertical configuration. As the length of the middle part
decreases, both critical forces increase, and so does the ratio
of the second critical force to the first. For our design the
desired force over the segmented beam should stay between
these two surfaces shown in the plot.

5. Results

In this section we study three different case studies. The first
study involves a uniform beam in the vertical configuration.
The second case is the vertical configuration with a seg-
mented beam. In both cases the force over the device is
considered to be the weight of a car. The last case study is a
segmented beam in the horizontal configuration. The indirect
device is designed to generate electricity from human weight.
The output power and the gap size are calculated for all three
cases and ultimately the effect of design parameters on the
output power and gap size is studied.

5.1. Uniform beam

We investigate a case study for the direct configuration, using
the uniform beam (figure 7). A 10 inch (254mm) long and 1.5
inch (38.1 mm) wide piezoelectric bimorph with 0.03 inch

Figure 6. First critical buckling force (lower surface) versus second
critical buckling force as a function of thickness of the piezoelectric
layer and the length of the middle part.
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(762μm) thick steel substrate and 0.04 inch (1016 μm) PZT-5A
piezoelectric patches meets all the requirements mentioned in
the design section to be used as the bending element in the
vibrational energy harvester. PSI-5A4E Piezo sheets from Piezo
Systems, Inc. are used as the piezoelectric layer.

Figure 8(a) shows the dimensionless deflection of the
beam, which is the temporal term in modal expansion (T)
divided by the temporal term that results in maximum
allowable stress (Tmax). When the dimensionless deflection is
equal to one, the beam is at the border of fracture. One fourth
of the weight of a car, which is the force on each tire, is
considered as the axial force over the device (2450 N). If the
axial force increases, the amplitude of the free oscillations
increases and the height of the peaks in figure 8(a) will be
larger. This increases the amount of output power. Therefore
the best power output is achieved if there is a quickly
repeating large force over the harvester. It is also interesting
that after the engagement of the safety stop, the beam con-
tinues to oscillate. In other words, the motion of the beam is
completely dynamic and oscillatory at almost every moment.
The piezoelectric beam performs free oscillations after each
sudden change of the axial force. Since the free oscillations
are at the natural frequency of the harvester the power gen-
eration frequency is at the optimal value. The free vibration
nature of the energy harvesting element implies that the
energy generated from each sudden force variation is fixed.
Thus, the more frequent the variations of the axial load, the
more power is generated.

The instantaneous power across a 10 kΩ resistive load is
plotted in figure 8(b). The value of the resistive load is
selected to match the impedance of the piezoelectric layer
when the beam oscillates under no axial force at its funda-
mental natural frequency (equation (28)). The average power
for generated electricity in figure 8(b) is 42.3 mW. The gap
distance is 0.02 mm.

5.2. Segmented beam

Next, we study both configurations using the segmented beam
instead of the uniform beam. For the direct configuration,

PSI-5A4E Piezo sheets from Piezo Systems, Inc. are con-
sidered as the piezoelectric element. We use a piezoelectric
bimorph beam for the middle part with a 101.6 mm long and
38.1 mm wide with 1778 μm thick steel substrate and 508 μm
thick PSI-5A4E (the piezoelectric material) piezoelectric
patches. The lengths of the first and third parts of the beam are
76.2 mm. Figure 9(a) illustrates the dimensionless deflection
of the beam and figure 9(b) shows the instantaneous power
across an 8 kΩ resistive load (the value of the shunt resistance
is chosen to match the impedance of the piezoelectric element
at the first natural frequency). Quarter weight of a typical car
(2450 N) is the applied axial force on the device.

As illustrated in the figure 9(a), the majority of the
electricity is generated after the force is removed. To study
the relation between the load resistance and the generated

power, the average power V

R
rms

2( ) for different resistances

were calculated. It is shown in figure 10 that when resistance
equals 8 kΩ, we have the maximum generated power. This
resistance is close to the resistance calculated as:

R
C

1
, 28( )

w
=

where C is the capacity of the piezoelectric layer and ω is the
natural frequency of the beam. The value calculated from
equation (28) is 10 597Ω. The duration of force being applied
to the harvester is assumed to be 0.05 s. After the force is
removed the beam springs back. The average power for
generated electricity in figure 9(b) is 27.3 mW. The gap
distance is 0.035 mm.

For the indirect configuration (figure 2), we use a piezo-
electric bimorph beam for the middle part with a 76.2mm long
and 72.4mm wide with 2032 μm thick steel substrate and
2032 μm thick piezoelectric patches (PSI-5A4E from Piezo
Systems, Inc.). By using this beam in our device we make sure
that the applied force is more than the first critical load of the
piezoelectric beam and also less than the second critical load.
The lengths of the first and third parts of the piezoelectric beam
are 127mm. The length of the oblique beams (L0 in figure 3) is
3 inches and the angle between the upper beam and oblique
beams (θ in figure 3) is 10°. With this angle, we make sure that
there is sufficient force for buckling of the beam (for this case
the first critical buckling force is 1458 N). If we decrease the
angle, the force needed for buckling the device would decrease,
but having a very small θ angle makes the building of the
device impractical. The calculated safety factor for the axial
load is 15 and 8 for the substrate and piezoelectric layers (the
yield stress is assumed 40MPa and 250MPa for these layers).
Since the motion of the beam is oscillatory even after the stop
is hit, another safety factor is considered in the last step of the
design. The main advantage of indirect configuration over the
vertical configuration is the increase in the safety recess. The
required gap size is maximum allowable shortening of the
beam (Δmax) multiplied by the cotangent of θ. If θ is less than
45°, the required gap size is larger than Δmax. A larger gap
would make the building and implementing of the device more
convenient.

Figure 7. Schematic of a uniform beam in the buckled position.
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Figure 11(a) shows the dimensionless displacement of the
segmented beam in the horizontal device. The duration of the
load is assumed 0.2 s. Since the force over the horizontal
device is assumed to be human weight, the force duration is
larger than that of the vertical case. The beam springs back to
the zero equilibrium position similar to the vertical configura-
tion. The average power generated is 8.5 mW. Considering the
fact that we used human weight for generating electricity in the
harvester, the generated power is notable. Figure 12 shows the
average power using different resistances. The maximum
power is generated using a 42 kΩ resistive load (figure 11(b)).
If we use equation (28), the resistive load is 26 kΩ, which is
slightly different from the optimized resistance. Although these
two resistive loads are different, the generated power does not
change significantly if we use one of the resistances over the
other one. The difference can be justified by the fact that the
frequencies of the oscillations of the buckled and unbuckled
beams are different. This difference in oscillation frequency
translates to the difference in optimal shunt resistance. The
same geometry can be used in a stress ball shaped energy
harvester used for charging portable electronic devices.

The most important advantage of using a segmented
beam over uniform beam is the increase in the required gap
distance. The required gap is even larger in the horizontal
configuration due to the usage of the linkage mechanism. The
gap distance for the case study of the horizontal device is
0.8 mm, which is larger than vertical configuration and about
forty times larger than uniform beam.

5.3. Design parameters

In this section, we study the effect of the design parameters on
the power output and the gap size. In the horizontal config-
uration, the required gap decreases with θ. It is then desirable
to consider small θ angles. One should observe the fabrication
limitations in choosing the value of θ. The length of the lateral
beam does not affect the recess significantly (figure 13(a)).
So it could be concluded that the most important parameter
design of a horizontal harvester is the θ angle.

The effect of the length of the piezoelectric layer and its
thickness in the horizontal device is also illustrated in
figure 13(b). As is shown in the figure, δ (recess gap)

increases as the length of the piezoelectric layer (the middle
part of the beam) increases. By increasing the thickness of the
piezoelectric layer, at first the gap distance increases, but after
a point it decreases because the piezoelectric layer is not the
susceptible part of the piezoelectric beam. For thin piezo-
electric layers, the substrate breaks before the piezoelectric
layer, so it is crucial to ensure the safety of both piezoelectric
layer and substrate. The deflection shape for a beam with a
thick piezoelectric patch and a thin steel substrate is illustrated
in figure 14. Because the beam is much thicker in the middle,
it is more prone to damage at the interfaces of the middle
segment and the other segments of the beam.

The relation between the thickness of the active layer
(piezoelectric layer) and the length of the middle part of the
beam and the output power for the indirect device is illustrated
in figure 15. By increasing the length of the middle segment,
the generated power of the device increases. As the overall
length of the beam increases, the total stiffness of the beam
decreases, which results in more vibration of the beam. The
power output is directly related to the vibrations. Increasing the
thickness of the piezoelectric layer to a certain extent can
enhance the output power of the beam. Beyond that, the pie-
zoelectric patch acts rigid and only the uncovered portions of
the beam vibrate. As a result the generated power decreases.

6. Conclusion

In this paper, generation of electricity from uniform and
segmented piezoelectric beams was studied. The mode shapes
of the segmented beam were calculated and the electro-
mechanical equations were solved for vertical and horizontal
configurations. The load over the harvester results in buckling
of the piezoelectric beam. This transition results in oscilla-
tions of the piezoelectric beam and causes power generation.
After the force is removed (the person takes another step or
the car passes over) the beam springs back to the unbuckled
shape and more power is generated. To prevent the beam
from fracture or damage, a mechanical stop is placed to limit
the beam deformations. The direct design can be implemented
in roads, using the weight of the passing cars to generate
electricity. By using the segmented beam instead of a uniform

Figure 8. (a) Dimensionless displacement and (b) instantaneous power of a uniform beam in the direct configuration.
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beam the required gap distance increases, which makes this
design more practical in terms of manufacturing. The force
capacity of the indirect design is smaller than that of the direct
design. This makes the direct design more suitable for energy
generation from cars while the indirect design is more perti-
nent to power generation from human power. The indirect
configuration makes it easy to implement in treadmills,
shopping center floors, or dance floors and also makes it
possible to use the human body weight as the source of
applying force to the device and generating electricity. The
required gap distance is also larger for the segmented con-
figuration. It was shown that the gap distance of the horizontal
design is about forty times than that of the vertical config-
uration. The required gap distances for different θ angles and
different lateral beams were discussed and it was shown that θ
angle is a critical parameter in designing the horizontal
device. Governing equations of the system were derived for
two vibration regimes (before engagement of the stop and
after the engagement). The transient vibrations of the beam
have been analytically modeled. The geometric nonlinearities
of the beam have been taken into account. The deflection and
output power of the device were calculated and studied for
two case studies. The uniform direct design with a 254 mm
long and 38.1 mm wide piezoelectric beam generates

42.3 mW and the required gap distance (Δ) is 0.02 mm. The
load over the direct design is 2450 N. By using a segmented
beam the required gap size increase to 0.035 mm. If we use a
segmented beam in the indirect design, Δ increases to 0.8 mm
and it generates 8.5 mW power. It was shown that there is an
optimized resistance for each design that generates the max-
imum average power output. Finally, the effect of the length
and thickness of the piezoelectric layers on the output power
and also the gap distance were investigated.

Appendix

A more advanced way to find the coefficient is to reduce the
12×12 matrix using transformation matrices. The aim of this
method is to reduce the size of the coefficient matrix to reduce
the computational time and numerical errors [36]. The principle
of this method, which we call the transformation matrices
method, is to use the equilibrium and continuity conditions to
transform the two boundary condition equations of one end of
the beam to two equations for the other end. By having these
two new equations, there are in total four equations for one end
of the beam and we can find the natural frequencies of the
system and four unknown coefficients of that end. By using
this method we should calculate the determinant of a 4×4
matrix instead of a 12×12 matrix for the segmented beam
case. This method would show a significant difference in cal-
culation time when we have large matrices [36]. Although in
our case the first matrix (12×12) is not very large, due to the
high number of numerical calculations for the optimization of
the device, we use the transformation matrices method. This
method is very useful and time saving when it comes to the
optimization part. In order to find the optimized thickness or
length of the beam, we need new numerical calculations for
every configuration. Considering the number of different
configurations, using this method reduces the overall time of
the calculations significantly.

We have two boundary conditions at each end of the beam;
this results in four boundary conditions. Considering these

Figure 9. (a) Dimensionless displacement and (b) instantaneous power of a segmented beam in the direct configuration.

Figure 10. Average output power versus resistance for a segmented
beam in the direct configuration.
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boundary conditions at the two ends of the beam we have:
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Figure 11. (a) Dimensionless displacement and (b) instantaneous power of a segmented beam in the indirect configuration.

Figure 12. Average output power versus different resistances for a
segmented beam in the indirect configuration.
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and x* is l1 or l1+l2 or, depending on the interface we are
writing the equations at. Finally we have:
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If we combine equations (35) and (36) we get:
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1
4 4 4 4

[ ]
[ ] [ ] [ ][ ] [ ] ( )

⎡

⎣
⎢⎢ ⎡⎣ ⎤⎦

⎤

⎦
⎥⎥=

´

´
- -

´ ´

We find the value of β that makes the determinant of
matrix B equal zero. By applying this method the size of the
initial coefficient matrix (12×12) is reduced to a 4×4
matrix.
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